

DRIVING QUESTION: How do we use the process of inquiry (scientific method) to study the natural world?

Artifact: Using the "Process of inquiry," complete the following steps in order to contribute to the body of knowledge (yay science!). <u>Record</u> the process in your science notebook.

Observation: Using a "wonder-wander," make an observation that can be used to spur a question. You can do this in your house, at school, or at your favorite place or park. An interesting observation generates a question that prompts you to learn more (by conducting an experiment or meta-research.)

Question: Develop a scientific question. Scientific questions have real answers, are testable, have a hypothesis that is falsifiable (can be proven wrong), and is interesting! EXAMPLES OF GOOD QUESTION STARTERS ARE "WHAT IS THE RELATIONSHIP BETWEEN..." "WHAT FACTORS CAUSE..." AND "WHAT ARE THE EFFECTS OF"

Develop Hypothesis: Make a prediction of the various outcomes you expect out of your experiment. There are usually at least three: Two alternating hypotheses: H1/H2(a positive and negative correlation between your variables), and the Null hypothesis: H0, which means there is not a correlation between variables.

Plan and Test: Write out the important parts of an experimental design.

INDEPENDENT VARIABLE: WHAT VARIABLE ARE YOU PURPOSELY CHANGING IN YOUR EXPERIMENT?

<u>Dependent variable:</u> What will you go out and measure? What data will you collect?

CONTROL GROUP: WHAT WILL YOU COMPARE YOUR RESULTS TO?

<u>CONSTANTS:</u> WHAT OTHER VARIABLES WILL YOU KEEP THE SAME BETWEEN YOUR TRIALS IN ORDER TO ISOLATE THE INDEPENDENT VARIABLE (THE ONLY ONE YOU ARE PURPOSELY CHANGING.)

Analyze and Interpret: Create a graph that shows the relationship between your independent variable and your dependent variable. You MAY USE A BAR GRAPH, LINE GRAPH, OR PIE CHART, DEPENDING ON YOUR RESULTS. THE INDEPENDENT VARIABLE GOES ON THE X-AXIS (HORIZONTAL), AND THE DEPENDENT VARIABLE GOES ON THE Y-AXIS (VERTICAL).

Conclude and Report: Using the technique "Claim-Evidence- Reasoning" write out a conclusion in your notebook to make a strong scientific argument. FIRST, MAKE A CLAIM (IE, ANSWER YOUR SCIENTIFIC QUESTION). THEN IN A CONCISE WAY, PRESENT THE STRONGEST EVIDENCE, FOLLOWED BY SUPPORTING EVIDENCE (FROM YOUR EXPERIMENT OR RESEARCH). FINALLY RATIONALIZE WHYYOUR DATA SUPPORTS YOUR CONCLUSION. THIS IS THE "BECAUSE" PART OF THE CONCLUSION.

Reflect and Rethink: Reflect on the challenges to this process. What would you do differently next time? What additional questions do you have based on your findings? Are there sources of Error in your experiment? How could you minimize them? What were some of the roadblocks/errors/tricky parts of the process of science? How could these problems be solved?

GRADING RUBRIC:

Learning Goals:	Advanced (4)	Proficient (3)	Partially Proficient (2)	Not Yet Proficient (1)
Develop scientific	In addition to the proficient	All evidence is reflected in science journal (neat	"Process" is recorded, but is	Large aspects of the
questions.	column:	and labeled).	disorganized or hard to follow.	"process" are missing.
Design and	Experiment is	Scientific question is		C
conduct and experiment.	clear and the outcomes are	narrow, and can be answered by	Question is present but it is	Question is a "why"
Develop	predicted.	experiment or doing	well-defined.	question.
scientific	Data is	research.	Europine ant is	Even avian and
arguments	represented	Europin ontol docion	Experiment is	Experiment
(using	accurately in a		explained, but	does not
Claim-Evidence-	graph and	Includes	IV/DV/CG/COllsta	accurately
(C-E-R)	table.	IV/DV/CG/COnstants	nts not identified.	question.
	Student has a	Data is present.	Data is	
	thoughtful		disorganized, but	Data is
	"reflection" on the process.	Scientific argument includes C-E-R.	present.	inaccurate or missing.
	-		Scientific	
			argument makes a	Scientific
			claim and	Argument is
			provides evidence,	inaccurate or
			but does not	missing.
			include reasoning.	